

Engineering Formula Sheet

Statistics

Mean

 $\mu = \frac{\sum x_i}{n}$

μ = mean value

 $\Sigma \mathbf{x}_i = \text{sum of all data values } (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots)$

n = number of data values

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$$

 σ = standard deviation x_i = individual data value ($x_1, x_2, x_3, ...$) μ = mean value n = number of data values

Probability

Frequency

$$f_{x} = \frac{n_{x}}{n}$$
$$P_{x} = \frac{f_{x}}{f_{a}}$$

 f_x = relative frequency of outcome x n_x = number of events with outcome x n = total number of events P_x = probability of outcome x f_a = frequency of all events

Binomial Probability (order doesn't matter)

 $\mathsf{P}_{\mathsf{k}} = \frac{\mathsf{n}!(\mathsf{p}^{\mathsf{k}})(\mathsf{q}^{\mathsf{n}\cdot\mathsf{k}})}{\mathsf{k}!(\mathsf{n}\cdot\mathsf{k})!}$

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Mode

Place data in ascending order. Mode = most frequently occurring value

If two values occur at the maximum frequency the data set is *bimodal*. If three or more values occur at the maximum frequency the data set is *multi-modal*.

Median

Place data in ascending order. If n is odd, median = central value If n is even, median = mean of two central values

n = number of data values

Range

Range = $x_{max} - x_{min}$

 x_{max} = maximum data value x_{min} = minimum data value

Independent Events

P (A and B and C) = $P_A P_B P_C$

P (A and B and C) = probability of independent events A and B and C occurring in sequence P_A = probability of event A

Mutually Exclusive Events

 $P (A \text{ or } B) = P_A + P_B$

P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

 P_A = probability of event A

 Σx_i = sum of all data values (x₁, x₂, x₃, ...)

n = number of data values

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$

P (A|D) = probability of event A given event D P(A) = probability of event A occurring P(\sim A) = probability of event A not occurring P(D| \sim A) = probability of event D given event A did not occur

Engineering Formulas

Conversions

Mass 1 kg = 2.205 lb _m 1 slug = 32.2 lb _m 1 ton = 2000 lb _m	Area 1 acre = 4047 m ² = 43,560 ft ² = 0.00156 mi ²	Force 1 N = 0.225 lb _f 1 kip = 1,000 lb _f Pressure	Energy 1 J = 0.239 cal = 9.48 x 10 ⁻⁴ Btu = 0.7376 ft·lb _f 1kW h = 3,600,000 J
<i>Length</i> 1 m = 3.28 ft 1 km = 0.621 mi	Volume 1L = 0.264 gal $= 0.0353 \text{ tr}^3$	1 atm = 1.01325 bar = 33.9 ft H_2O = 29.92 in. Hg	Defined Units
1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft	= 0.0333 fl = 33.8 fl oz 1mL = 1 cm ³ = 1 cc	= 760 mm Hg = 101,325 Pa = 14.7 psi 1psi = 2.31 ft of H ₂ O	$1 J = 1 N \cdot m$ $1 N = 1 \text{ kg·m / s}^2$
Time 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	Temperature Unit Equivalents1 K= 1 °C= 1.8 °F= 1.8 °RSee below for temperature calculation	Power 1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lbt/s	$1 Pa = 1 N / m^{-1}$ $1 V = 1 W / A$ $1 W = 1 J / s$ $1 W = 1 V / A$ $1 Hz = 1 s^{-1}$ $1 F = 1 A \cdot s / V$ $1 H = 1 V \cdot s / V$

SI Prefixes

Numbers Less Than One				
Power of 10	Prefix	Abbreviation		
10 ⁻¹	deci-	d		
10 ⁻²	centi-	С		
10 ⁻³	milli-	m		
10 ⁻⁶	micro-	μ		
10 ⁻⁹	nano-	n		
10 ⁻¹²	pico-	р		
10 ⁻¹⁵	femto-	f		
10 ⁻¹⁸	atto-	а		
10 ⁻²¹	zepto-	Z		
10 ⁻²⁴	yocto-	У		

Numbers Greater Than One				
Power of 10	Prefix	Abbreviation		
10 ¹	deca-	da		
10 ²	hecto-	h		
10 ³	kilo-	k		
10 ⁶	Mega-	М		
10 ⁹	Giga-	G		
10 ¹²	Tera-	Т		
10 ¹⁵	Peta-	Р		
10 ¹⁸	Exa-	E		
10 ²¹	Zetta-	Z		
10 ²⁴	Yotta-	Y		

Equations

Mass and Weight

 $M = VD_m$

- W = mg
- $W = VD_w$
- V = volume
- D_m = mass density
- m = mass
- D_w = weight density
- g = acceleration due to gravity

Temperature

T_K = T_C + 273

1K - 1C 1 210

 $T_{R} = T_{F} + 460$ $T_{F} = \frac{5}{9}T_{c} + 32$

 T_{K} = temperature in Kelvin

- $T_{\rm C}$ = temperature in Celsius
- T_R = temperature in Rankin
- T_F = temperature in Fahrenheit

F = ma

F = force

m = mass a = acceleration

Equations of Static Equilibrium $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_P = 0$ F_x = force in the x-direction F_y = force in the y-direction M_P = moment about point P

Equations (Continued)

Fluid Mechanics				
$p = \frac{F}{A}$				
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Charles' Law)				
$\frac{p_1}{T_1} = \frac{p_2}{T_2} (Gay-Lussanc's Law)$				
$p_1V_1 = p_2V_2$ (Boyle's Law)				
Q = Av				
$A_1v_1 = A_2v_2$				
Horsepower = $\frac{Qp}{1714}$				
absolute pressure = gauge pressure + atmospheric pressure				
p = absolute pressure $F = Force$ $A = Area$ $V = volume$ $T = absolute temperature$ $Q = flow rate$ $v = flow velocity$				
Maahaniaa				
d				
$\bar{s} = \frac{a}{t}$				
$\bar{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$				
$a = \frac{v_f - v_i}{t}$				
$X = \frac{v_i^2 \sin(2\theta)}{-g}$				
$v = v_0 + at$				
$d = d_0 + v_0 t + \frac{1}{2} a t^2$				
$v^2 = v_0^2 + 2a(d - d_0)$				
$\tau = dFsin\theta$				
\overline{s} = average speed \overline{v} = average velocity				

Electricity

Ohm's Law V = IRP = IV R_T (series) = $R_1 + R_2 + \cdots + R_n$ $R_{T} \text{ (parallel)} = \frac{1}{\frac{1}{R_{1} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}}}$ Kirchhoff's Current Law $I_{T} = I_{1} + I_{2} + \dots + I_{n}$ or $I_T = \sum_{k=1}^n I_k$ Kirchhoff's Voltage Law $V_T = V_1 + V_2 + \dots + V_n$ or $V_T = \sum_{k=1}^n V_k$ V = voltage V_T = total voltage I = current $I_T = total current$ R = resistance R_{T} = total resistance P = powerThermodynamics $P = Q' = AU\Delta T$ $P = \frac{Q}{\Delta t}$ $U = \frac{1}{R} = \frac{k}{L}$ $P = \frac{kA\Delta T}{I}$ $A_1v_1 = A_2v_2$ $\mathsf{P}_{\mathsf{net}} = \sigma \mathsf{Ae}(\mathsf{T}_2^4 - \mathsf{T}_1^4)$ P = rate of heat transfer Q = thermal energy A = Area of thermal conductivity U = coefficient of heat conductivity (U-factor) ΔT = change in temperature Δt = change in time R = resistance to heat flow (R-value) k = thermal conductivity v = velocityP_{net} = net power radiated $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 K^4}$ e = emissivity constant L = thickness

m = mass

Q = thermal energy

 ΔT = change in temperature

c = specific heat

Engineering Formulas

 Δd = change in displacement

g = acceleration due to gravity

X = range

d = distance

 θ = angle τ = torque

t = time

Section Properties

Engineering Formulas

Simple Machines

IMA = Total number of strands of a single string supporting the resistance

 $IMA = \frac{D_E \text{ (string pulled)}}{D_R \text{ (resistance lifted)}}$

d_{out} = Diameter - driven

- $\tau_{in} = Torque driver$
- Tout = Torque driven